Insegnamento GEOMETRIA

Nome del corso di laurea Ingegneria edile-architettura
Codice insegnamento GP004889
Curriculum Comune a tutti i curricula
Docente responsabile Marco Timpanella
Docenti
  • Marco Timpanella
Ore
  • 54 Ore - Marco Timpanella
CFU 6
Regolamento Coorte 2024
Erogato Erogato nel 2024/25
Erogato altro regolamento
Attività Base
Ambito Discipline matematiche per l'architettura
Settore MAT/03
Anno 1
Periodo Primo Semestre
Tipo insegnamento Obbligatorio (Required)
Tipo attività Attività formativa monodisciplinare
Lingua insegnamento Italiano
Contenuti Algebra lineare. Geometria analitica elementare nel piano e nello spazio.
Testi di riferimento Note del docente.
E. Schlesinger, Algebra lineare e geometria. Zanichelli editore.
K. Nicholson, Algebra lineare, McGraw Hill
Obiettivi formativi Al termine del corso gli studenti dovranno essere in grado di risolvere sistemi lineari e semplici problemi di algebra lineare (determinare la base e la dimensione di un sottospazio, determinare il rango di una matrice eventualmente dipendente da un parametro, determinare il nucleo e l'immagine di una applicazione lineare, determinare autovalori e autovettori di un endomorfismo). Dovranno inoltre essere in grado di applicare l'algebra lineare a problemi geometrici nello spazio. Dovranno inoltre essere in grado di esprimere i principali concetti teorici del corso in un linguaggio matematicamente corretto e privo di ambiguità, dimostrando familiarità con le notazioni di base della matematica moderna.
Prerequisiti Nozioni base di matematica e logica.
Metodi didattici Lezioni frontali accompagnate da esercizi.
Altre informazioni La frequenza non è obbligatoria ma vivamente consigliata.
Modalità di verifica dell'apprendimento L'esame consiste di un esame finale scritto. La prova scritta è suddivisa in due parti, da svolgere in un totale di 180 minuti. La prima parte dell'esame è di stampo teorico, ed il superamento di questa è necessario per accedere alla seconda parte dello scritto. La prima parte dell'esame non contribuisce alla votazione finale. La seconda parte dell'esame scritto è costituita da esercizi sui seguenti argomenti
- Sistemi Lineari
- Matrici
- Applicazioni Lineari
- Gemetria Affine ed Euclidea

Il voto della prova sarà espresso in 30esimi.
Programma esteso Algebra lineare. Spazi vettoriali. Dipendenza lineare. Teorema dello scambio. Basi. Teorema di equicardinalità delle basi. Dimensione. Teorema del completamento della base. Sottospazi. Intersezione e somme di sottospazi. Relazione di Grassmann. Applicazioni lineari. Nucleo ed immagine. Teorema fondamentale di isomorfismo tra spazi vettoriali. Lo spazio vettoriale delle matrici m x n. Prodotto di matrici. Matrice associata ad una applicazione lineare. Determinante di una matrice quadrata. Matrice inversa. Rango di una matrice. Sistemi lineari. Teorema di Rouché-Capelli. Sistemi omogenei. Lo spazio delle soluzioni di un sistema omogeneo. Teorema di Cramer. Algoritmo generale per determinare l'insieme delle soluzioni di un sistema lineare compatibile.
Geometria nel piano e nello spazio. Riferimenti cartesiani. Segmenti orientati. Vettori geometrici. Vettori paralleli e complanari. Coordinate dei vettori geometrici. Equazioni parametriche di una retta. Equazione di un piano. Intersezione e parallelismo tra piani. Equazioni cartesiane di una retta. Fasci di piani. Intersezione e parallelismo tra una retta e un piano. Intersezione e parallelismo tra rette. Rette sghembe. Prodotto scalare. Distanza tra due punti. Angolo tra due rette. Distanza punto-retta nel piano. Distanza punto-piano. Angolo tra due piani. Angolo tra retta e piano. Distanza punto-retta nello spazio. Distanza tra due rette sghembe. Sfera. Circonferenza nello spazio.
Obiettivi Agenda 2030 per lo sviluppo sostenibile 4
Condividi su